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Eé The gas dynamical effects of an expanding nearly fully ionized hydrogen region (Hi region),

which is associated with the formation of O and B stars, are investigated. The radiation from the
hot star is absorbed by the surrounding interstellar gas (mainly neutral hydrogen) and leads to its
ionization. Previous analyses have disregarded the internal motions set up in expanding Hu
regions. Similarity solutions of the equations of motion are presented for spherical and cylindrical
problems, thus enabling the effects of groups of stars as well as individual stars to be discussed.
For similarity to be applicable the initial density variations of the undisturbed neutral gas have to be
like 1/r? in the spherical case and like 1/r in the cylindrical case. This does not, however, limit
their use in describing the general picture of events for any other given density distribution.
Recombination of the ions and electrons and subsequent re-ionization by radiation within the
Hu region is allowed for; cooling processes such as that due to the excitation of O* ions are also
taken into account. Itisshown that the temperature of the ionized gas in the Hi region is approxi-
mately uniform even though the region as a whole is expanding. Rates of expansion are calculated
and it is also determined whether a shock propagates ahead of the ionized gas. In particular for rates
of expansion less than about 20 km/s a shock wave occurs ahead, but for speeds greater than about
20 km/s, which would occur in the initial motion, the rate of expansion of the ionized gas is too
great and an ‘isothermal’ shock occurs within the Hir region. The boundary between the ionized
and neutral gases can be regarded as a discontinuity and is termed an ionization front. The present
paper is concerned with the propagation of such fronts and accompanying shocks; a companion
paper by W. I. Axford investigates the structures of ‘isothermal shock’ and ionization fronts. The
lack of uniqueness, which occurs in the present paper, is removed when the results are combined
with Axford’s work.

THE ROYAL
SOCIETY

1. INTRODUCTION

The gas dynamical effects arising from the absorption of ionizing radiation from a hot star
in surrounding interstellar gas have been considered by several authors. Stromgren (1939)
discussed the static problem and found that interstellar gas can roughly be divided into
regions of neutral atomic hydrogen (hereafter referred to as the H1 regions) and regions of
nearly complete ionized hydrogen (Hm regions) near the radiating stars. Stromgren
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278 F. A. GOLDSWORTHY ON

investigated the extent of the Huregion and the boundary betweenitand an H1region. The
static H1r region is referred to as the Stromgren sphere and it is shown that, for an initial
number density of 7, hydrogen atoms per cubic centimetre, the radius of the Strémgren
sphere is proportional to #; . Hefound that the transition from high to low ionization occurs
in a very narrow region, in which as the proportion of neutral atoms increases the absorption
of the ionizing radiation becomes more intense. The thickness of this region is small com-
pared with the radius of the Stromgren sphere and hence can be regarded as a discontinuity.
In the treatment of expanding Hi1 regions this is a convenient assumption to make as it
leads to considerable simplification of the problem without losing many of its essentials.
The discontinuity is termed an ionization front and exhibits similar properties to detona-
tions and deflagrations. Some expressions connecting the flow variables on both sides of
an ionization front have been obtained by Kahn (1954). He introduced the following
nomenclature for the different kinds of ionization fronts. An R-type ionization front
advances with supersonic speed relative to the neutral gas ahead, while a D-type ionization
front advances with subsonic speed relative to the neutral gas. Thus an R-type ionization
front corresponds to a detonation and a D-type ionization front to a deflagration. We shall
use the same nomenclature but in addition we shall introduce the terms ‘weak D-type and
strong R-type’ or ‘strong D-type and weak R-type’ according to whether the ionization
front moves with subsonic or supersonic speed relative to the ionized gas behind the front,
respectively. A full discussion of the structure and properties of R- and D-type ionization
fronts is given by Axford in the following paper. Though we use Kahn’s nomenclature,
the equations which he derived will be modified in the later stages of this paper to
allow for recombination of ions and electrons and cooling effects in the vicinity of the
ionization front. This leads to important differences in the properties of ionization fronts
from those listed by Kahn; hence the reason for the more detailed investigation by Axford.

The heating and cooling of interstellar gas in both the Hx and Hr regions have been
discussed by Spitzer, Savedoff and others, and for details reference should be made to a
general lecture on the behaviour of interstellar gas given by Spitzer (1953). They concluded
that in the H 1 region the main processes involved are:

(i) the absorption of a stellar photon of high energy by a neutral atom, with the electron
going off with high kinetic energy which is available for heating the gas;
(ii) the recombination of the resulting electrons and ions;

(ii1) the excitation of the 0% excited level, 3-31 eV above the ground state.

The re-emission of radiation in the gas itself resulting from the recombination of electrons
and ions will be neglected in this paper in order to simplify the problem. The last two
processes will cool the gas. Spitzer and his co-workers found that for the heating and cooling
processes to balance, the temperature in the Hir region must be in the neighbourhood of
7000 to 10000 °K.. The heating and cooling processes in the H1 regions are different from
the above and are more complicated but a rough estimate of 100 °K for the equilibrium
temperature appears to be acceptable.

In this paper we shall consider the motion of a cloud of interstellar gas which is suddenly
exposed to a stream of ionizing radiation from a star or group of stars embedded in it. An
Hi region will result and this will expand and push the neutral atomic hydrogen gas
ahead of it. It will be shown in this paper that if its rate of expansion is less than about


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

IONIZATION FRONTS IN INTERSTELLAR GAS 279

20 to 25 km/s (depending on the type of radiating star) then a shock wave will propagate
ahead of the ionization front. Kahn & Schatzman (1955) considered a simplified model
based on Strémgren’s formula holding in the H i region and assuming the shock and the
ionization fronts to be close together. By application of the Rankine-Hugoniot shock
relations they were able to deduce the speeds of the shock and the ionization fronts. Savedoff
& Greene, unpublished, have considered the spherical problem in a manner similar to
Taylor’s (1946) consideration of the expansion of a shock wave surrounding a uniformly
expanding sphere. The expanding sphere in their case was the expanding Hir region;
Stromgren’s formula was applied to discuss its motion. In their analysis they allowed for
the cooling of the gas behind the shock. Like Kahn & Schatzman they found that the
expanding region is surrounded by a dense H1 region separated from the undisturbed
H1 region by a shock front. In both the above-mentioned papers no attempt was made to
discuss the internal motion of the H 1 region or to examine the changing pattern of the
flow in the course of the expansion, for instance, to consider whether a shock always
propagates ahead of the ionization front. Although a complete analysis of the problem
is difficult, the present paper endeavours to make good this deficiency and seeks a fuller
analysis of the whole flow, including the internal motion of the H 11 region. Thus the heating
and cooling processes in the H 11 region as given by Spitzer are included and allowance is
made for absorption of radiation from the star by recombined electrons and ions. Of
necessity a similarity of the flow pattern at all times is resorted to in order to simplify the
method of solution of the partial differential equations involved. This is an idealization but
it does not, however, prevent one from making a general discussion of the change in the flow
pattern as the H 11 region expands into any given initial density distribution of the neutral
gas. In this paper the rates of expansion of H 11 regions and accompanying shocks, if any, are
examined. We first neglect the effects of recombination and re-ionization in the Hirregion—
this leads to the result that the temperature is zero at the star which is obviously wrong. It
serves to stress the importance of considering the re-ionization of the recombined atoms
by absorption of radiation. This heats the gas and prevents the preceding result. Two basic
simplifying approximations are therefore made:

(i) the temperature of the Hi region is assumed to be approximately uniform, and

(ii) the gas in the Hu region is assumed to be nearly fully ionized.

Both these approximations are critically examined by Axford (1961) in the next paper.
By investigating the structure of ionization fronts he is also able to settle the questions
relating to the uniqueness of the flow pattern.

2. EqQuATIONS OF MOTION IN THE H1 REGION
All flow variables are assumed to depend only on the distance r from the centre of the
star and time ¢ A parameter z is introduced, which takes the value 1 or 2 according to
whether cylindrical or spherical symmetry is assumed. The equations are so written in the
hope that they will be self explanatory.
(i) Outward flux of quanta

_% (Jr) = a[Jr] [fM(l x):l, (1)

34-2
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where J is the number of photons crossing unit area persecond, « is the absorption coefficient
for ionizing radiation (at the Lyman limit), p is the density, M is the mass of a hydrogen
atom and x is the fraction of ionized atoms. The value of the absorption coefficient at the
Lyman limit is 6-3 X 1078 cm™2 (see Allen 1955). Re-emission of quanta in the gas itself
resulting from the recombination of electrons and ions has necessarily been neglected in
order to preserve radial symmetry. Stromgren (1939) made the same approximation and
gave reasons to justify it.

At the star, r = Ry, the photon output, J, R}, is a known constant.

(ii) Ionization balance equation

gt(%) gfrr}%a(rn")_“"[M “x)] ’g[ ’ (2)

where D/D¢ = 9/dt-+ud/dr, u is the radial velocity of the gas and f is the recombination co-
efficient (= 38x 10719/ T cm3/s; see Allen 1955). The first term on the right-hand side
represents the production of ions by the absorption of radiation from the star; the second
term represents the loss of ions on recombination with electrons.

where p is the pressure, £ is Boltzman’s constant and 7 is the temperature.
(iv) Equation of momentum

Dt~ par )
where .# is the mass of the star or, in the case when approximate cylindrical symmetry
exists, twice the mass per unit length of the axis along which a group of stars are supposed to
be distributed.

(v) Conservation of matter

dp "ou) —
i ;;9;(7" pu) = 0. (5)

(vi) Equation of energy

plos (52) +r; ()] = /[ (1= [ astes [ 5] taam1 [ 25T L), (0)

where $MQ? is the amount of energy left over, on the average, in each ionization. The
second and third terms on the right-hand side of equation (6) represent the loss of heat in
the gas by the recombination of ions with electrons and by the excitation of O ions, respec-
tively. L,(T) is the energy lost per electron per second in collision with oxygen ions and
this has been computed by Spitzer (1954) and for 7" > 4000 °K it can be approximated by

the form L,(T) = 097 x 10731 (T'— 4000)? (7)

In Spitzer’s computation the electron density was set equal to 1 per cubic centimetre and
the density of oxygen ions to 1073 per cubic centimetre. In our calculations the electron
density is (px)/M. Since the first ionization potential of an oxygen atom (13:56¢V) is
nearly the same as that of hydrogen (13-54¢V), we can expect that the density of oxygen
ions will be proportional to the density of protons, (px)/M. Observations by Struve and his
colleagues (see Struve 1950) substantiate this assumption ; they found that O ions are almost
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IONIZATION FRONTS IN INTERSTELLAR GAS 281

always present in regions where hydrogen is ionized and show the same sharp boundaries.
We will assume the same abundance ratio of oxygen to hydrogen as that assumed by
Spitzer, so that his results need only to be multiplied by [(px)/M]? to obtain the energy lost
per second per unit volume, i.e. the third term on the right-hand side of equation (6).

In deriving the above equations we have neglected the fact that the absorption coefficient
of the H atom varies with the frequency of the radiation absorbed ; photons of low frequency
are removed more easily than photons of high frequency. This means that the average
energy of the photons remaining increases as their number decreases. This effect has been
discussed by Kahn (1954) and Pottasch (1958) with reference to the bright rims on diffuse
nebulae. An approximate relation between the number of photons incident on unit area
per second and the average amount of thermal energy liberated at one ionization was
worked out. For the purposes of the present discussion, however, we will neglect the effect
and take 1 MQ? to be a constant equal to £7'; (see Kahn 1954).

3. EquaTions oF MoTION IN THE HI REGION

If the neutral gas is disturbed before ionization takes place then we must consider the
motion set up in a hot H1 region surrounding the expanding ionized gas. The equations of
motion in the H1 region are therefore the equations of momentum and continuity as given
in §2, and the energy equation (6) with the right-hand side zero if cooling is neglected.

Initially the neutral gas is in gravitational equilibrium so that

1dp, G
=t ()
po dr r

4. CONDITIONS AT THE IONIZATION FRONT
The narrow region, in which the neutral gas becomes ionized, i.e. where absorption of
radiation from the star is intense, is represented mathematically as a discontinuity, which is
termed an ionization front. Suffixes ¢ and z are used to denote data on the ionized and
neutral sides of the front. Then, provided that there is not sufficient time for the ionized gas
to recombine on passage through the front, it can be shown from ionization balance, mass,
momentum and energy considerations that

_ P
J =Bl (Ui—u,), (9)
plUi=w) = po(Ui— 1), (10)
/)ff‘P,(U;*uzy :pn""_pn([]t’—un)‘?? (11)
ar (i (G ST E 12)

where U, is the velocity of the front defined by r = R,(t). These equations were obtained and
discussed by Kahn (1954) for the case when x;, = 1.

5. ForM OF THE SOLUTION
In an attempt to solve the rather complicated partial differential equations in §2 subject
to the given boundary conditions, several difficulties were immediately apparent. Among
them was that of knowing the initial flow pattern. For instance, it is not known whether a
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shock in addition to the ionization front will occur in the neutral gas or perhaps even in the
ionized region, and the difficulty of solving partial differential equations without this
information is well known. We will therefore look for a similarity solution depending on one
independent variable only, so that the system of partial differential equations will reduce
to a system of ordinary differential equations. For the similarity solution to be applicable
the size of the star must no longer be a relevant factor in determining the motion of the gas.
The star has thus to be regarded as a point or line source of radiation, with a total photon
output equal to that of the star, thus

%’1-1;1’; It = J RL. (13)

Several restrictions are immediately placed upon the form of the similarity solution.

(i) The surface temperature 7', of the star is constant; moreover, the spectral quality
of the radiation field has been assumed to be constant also, so that @,, which is a typical
velocity in the problem, is constant. Hence the similarity variable # must be proportional
to t/r. The solution can therefore only be applied to problems where the ionized region
expands at a constant rate.

- (ii) Equation (9) and restriction (i) require that J/p must remain a constant at the ioniza-
tion front; hence J/p must be a function of 5 only.
(iif) Jr" must be a function of 7 only so that J7" will tend to a finite limit as » — 0 (i.e.
7 > 00).
We are now in a position to write down the similarity forms allowed:

w=tat), p=50) 20, o= ko,

A 7
(14)

T="T(®), x==x(y), J:;l;,f(ﬂ)>

where 7 = (t/r) /(2kT,/M) and T is a temperature to be defined later. Itis also convenient

to introduce the speed of sound
T _ [5rz)
a’t&i(ﬂ) 4m/3tw(77) . (15)

J

6. SPHERICAL IONIZATION FRONTS (RECOMBINATION IN H II REGION NEGLECTED)

The form of the similarity solution in the spherically symmetric problem requires the
initial density p, in the neutral gas to vary as

Po = W% (16)
where v, is some constant parameter. For the gas to be in equilibrium equation (8) reveals
that the pressure in the undisturbed gas must vary as

0o = G.# vy3r>+ constant. (17)

This is at variance with the similarity form assumed for the pressure. In order to overcome
this difficulty we assume that the pressure p, in front of the ionization front, or the shock
wave, if one occurs, can be ignored in comparison with the pressure behind; the form for
b, 1s then arbitrary. In all the cases which will be considered this will prove to be true.
Substituting the similarity forms into the equations of motion, we find that they can
onlv be possible solutions if recombination in the H 11 region is neglected and the gas is fully
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ionized. Gravitational forces in the H 11 region and the cooling caused by the excitation of
O™ ions have also to be ignored. Equations (4) to (6) then reduce to the Euler equations for
ideal fluid flow; to these we add

Jr?=J, R} and x=1. (18)
Although by making these approximations we neglect many interesting features that one
would like to include, it is hoped that a solution based upon them will point out their limita-
tions in regard to applicability. Several authors have made similar approximations in other
related problems. A more detailed treatment will be given later and comparison can then
be made. Inserting expressions (14) and (15) into the reduced equations of motion, we
obtain after a certain amount of manipulation,

Dy, = (1= —3[u g, (19)
Dpdst  (3—5%) [5(1—%)?—347]
o dp 15(1—2) N (20)

Dydo _ 2or7(3—5%) -
o dyp s(1—a)
with D = (1 —%)?—/2.
By dividing equation (20) by equation (19) we obtain the differential equation
do  A(3—5%)[6(1—%)2—35/?]
do — 3(1—) (5% (1 —%)?—32(5% —2)]’
which can be solved numerically. Once this has been done 7 and & can be determined from
equations (19) and (21). The behaviour of the solutions of equation (22) is shown in figure 1.
Each integral curve corresponds to a certain value of the arbitrary constant involved in the
integration of equation (22). The arrows marked in the figure indicate the direction of
increasing 7, i.e. of decreasing r for fixed time. On crossing the ‘critical’ lines |1 —%| = |/ |
the direction is reversed. Thus no integral curve crossing these lines can represent a real
flow, since for a given value of 5 there would correspond two possible values of the fluid

(22)

velocity.
Substituting expressions (14) and (15) in the ionization front relations (9) to (12), we
obtain MR} = MI, R = U(1—-,) 0, (23)
o (1—%) = 0,(1-%,), (24)
3.2 372
T At e e (25)
B+ (1 =) = 373+ (1=,)*+ (Qo/U)*. (26)

We first consider the conditions under which an ionization front moves into the neutral
gas without a shock wave developing ahead of it. For this case %, = 0, v, = 0, and we
assume &, > o, i.e. p; > p,. The ionization front will be R type. Equation (25) then

becomes A2 =31 —U) U, (27)

which, on substituting into equation (26), gives

P N (28)
ik zeEryt
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284 F. A. GOLDSWORTHY ON
Also, from equation (23) and (28), we obtain
wy = J{%(3—4%;);} MJ R Qp. (29)

We now require the value of %,. Relation (2%) imposes the condition that %, < } so that
only a section of the curve determined by equation (27), represents states which may exist
behind an R-type ionization front. The curve is shown in figure 1 and bears the label
‘Ri.f.’ curve. We now follow in the direction of increasing 5 any integral curve of equation
(22) which cuts this Ri.f. curve. It will be observed that all integral curves except one cross

2 E
| pr
77= T 1ncrea51ng
s ot
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Sop, -
2y
(¢]
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\\%§ev
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SQ e/ \\\
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01]10 \\\
\\ 1
\\
~
~
\\
SN D
\'g P T~
; ]
G e ffre e — F ~ . e ~
——t Lol T T == A
e ~ N
4 =7 S 6.
4 4 ~ %
// /,f‘\% ~o R
/ R ~Eo
/ / S
/
Hi / I~
i ~
| 4 ] =
~0'5 Y 05 U 1

Ficure 1. The (%, /)-plane representing solutions of the differential equation (22).

the critical line or enter the singularity # = 1, o/ = 0. If the star is assumed to be at rest,
the curves entering this singular point (1, 0) can be disregarded. The curve ADE in figure
1 is the exception. It has the property that # is asymptotic to 2/5 as.«/ approaches infinity.
Use of equation (19) shows that as./ — oo along this integral curve 7/¢ tends to zero, which
means that the fluid is at rest at the centre, i.e. at the star, and this is what we require. But
the integral curve also passes through the singular point 4 {# =}, = /({%)}, whichis on
the Rif. curve. It can easily be verified that on approaching this singularity r/¢ tends to
infinity, which would mean that the ionization front travelled with infinite speed. This is
not the case, and it is therefore necessary to look for another solution. This turns out to be
the ‘trivial’ solution of equation (19), when both the numerator and denominator are
identically zero, namely

U =% A=/ (30)
17 5 r
Thus uzgz, a = EZ (31)

Substituting these values in (28) and (29) we find that the ionization front moves with a

speed
P U = /2 Q, (32)
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and that the assumed flow pattern, i.e. no shock ahead of the ionization front, is correct
provided that the initial density distribution is such that w, is given by

wy = 27 MU, R% Q5. (33)

The variation of J, R and @, for differing types of stars is shown in table 1, which is taken
from Kahn (1954). Tl}”e ionization front in this case moves with supersonic speed relative
to the fluid ahead and supérsonic speed relative to fluid behind, i.e. strong R-type similar to
a strong detonation.

We now consider the case when a strong shock moves ahead of an ionization front, thus
disturbing the neutral gas before ionization takes place. The differential equations to be
solved in the disturbed neutral gas are similar to those used in the H1r region, though it
must be remembered that in the H1 region x = 0. A strong shock is represented in the
(%, )-plane by the point B(, +./5). From B we follow the integral curve in the direction
of 7 increasing to some point C, say, which determines U, and .«,. By substituting these values
in equation (25) we obtain a relation between %; and /; this is plotted in figure 1 and bears
the label ‘Di.f.” curve, the ‘D’ indicating that the ionization front in this case is D-type.
If we now consider all the integral curves, which cross the Di.f. curve, the integral curve

TABLE 1
type of
star 0] 07 O9g Bo B2
J RS (s71) 1-2 X 10%0 47 x 1048 2:9 X 10% 14 X 10% 1-2 X 10%
Q, (cm s™1) 36 x 108 2+9 x 108 2:3 %X 108 2-1 X 108 1-8 x 108

DE vyields a solution with the star at rest at the centre. Thus the required solution .7 (%)
of equation (22) in this case is made up of the sections BC and DE continued to & = o,
the sections representing the flow set up in the neutral and ionized gases, respectively. By
substituting & (%) in equations (19) and (21) we obtain 7/5; and w/w, as functions of %.
The corresponding values of w, and U are then determined from equations (23) and (26).
By varying the point C we can obtain corresponding values of (0, Q,)/(MJy R%) and U/Q,
for which a shock wave will propagate with speed U, ahead of the ionization front. This
relation and the corresponding values of U/U, are shown plotted in figure 2.

Figure 2 shows that v, > MJ, R%/Q,./2, 0-84 < U,/U, < 1 in the range 0 < U;/,/2Q, <1.
Thus even in the extreme case when v, is large figure 2 shows that the velocity of the shock
relative to the ionization front is small; this suggests that the neutral gas will be compressed
in a narrow shell outside the expanding H 1 region. Some typical values of w,, the speed of
the ionization front, the temperature 7; behind the ionization front and the temperature 7,
behind the shock are given in table 2 for the case when a strong ionization front travels by
itself, and for a particular case when compression by a strong shock precedes ionization.
From figure 1 it will be observed that the ionization front, for the case when a shock wave
propagates ahead of it, moves with subsonic speed relative to the fluid both ahead and
behind the front. (The points C and D both lie in the subsonic region.) The ionization
front therefore corresponds to a weak D-type front similar to a weak deflagration. The
extreme case of a strong ionization front (strong R-type) could have been regarded as a
combination of a D-type front and a strong shock wave propagating at the same speed, as
both figures 1 and 2 indicate.

35 Voi. 253. A.
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For the case v, < (MJ, R%)/(Q,./2) an understanding of the flow pattern is not too clear.
An examination of figure 1 rules out the possibility of an ionization front moving without
the presence of a shock wave, except for the particular case already described. The only
other flow pattern which is mathematically possible takes into account the possibility of a
shock wave developing inside the ionized region. This shock wave will have to be such that
conditions behind the shock are described by a point on the integral curve AE (so that the
fluid will be at rest at the centre). Thus the possible flow immediately ahead of such a shock
can be computed and in figure 1 this is represented by the curve FG. If we follow a typical
integral curve from any point of FG in the direction 5 decreasing, it enters the singularity at

20 =10
15—
N ® —
M .~ -
*
~ — B
S 10 05 =,
T L 4R
>
S
= -
5,_
| | | | | | l l 0
0 05 10
Ui/2@Q,
FIGURE 2. /2 Qw,/MJ R; and U;/U, shown as a function of U,/,/2Q,.
TABLE 2
type of star w, U, (km/s) T,(°K) T.(°K)
05 04 x 10%0 50 47500 —
B2 0-8 x 101% 25 12000 —
O5 1-1 X 1020 28 24700 26800
B2 2-2 X 1015 14 6250 6400

the origin without crossing the Ri.f. curve. It does, however, cross the Di.f. curve hence, if
the pattern represented a possible flow in the ionized region, a shock wave with a D-type
ionization front following it must occur. We thus follow the procedure described in the
previous paragraph; start at the strong shock point B, move from B along the integral curve
to some point C, say, then fit a D-type ionization front in, behind which the flow is repre-
sented by some point on the Di.f. curve, say H, in the region bounded by the curve FG, the
negative U-axis and the curve FO which is the integral curve of equation (22) through F.
Now follow the curve HI until the point 7 of the curve /G is reached. At this point a shock
occurs, where the flow variables change discontinuously to conditions represented by the
point D, from thence we proceed to the star along the integral curve DE. It is interesting
to note that the ionization front in this case is a strong D-type (similar to a strong deflagration
wave). The question, which obviously comes to mind, is whether a strong D-type ionization
front can exist? Such a question can only be answered by a discussion of the ionization front
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structure. Another difficulty also appears for the case described in this paragraph, for it is
found that there is not a unique solution—any point of the Di.f. curve in the region bounded
by GIFO and the negative U-axis could have been chosen. The question of uniqueness and
whether strong D-type ionization fronts occur is answered by Axford in the following paper
which deals with their structure. It is shown there that if recombination and cooling
is neglected then strong D-type fronts are not possible. Thus what happens when
wy < (MJy R%)/Q,./2 is still an open question.

However, there are other features of the results of this section that are equally disturbing.
In figure 3 the distribution of density, pressure, velocity and temperature of the gas is
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Ficure 3. Temperature, density, pressure and gas-velocity distributions for cases (a) ionization
front only, (b) ionization front with shock ahead.

plotted for the two cases for which the parameters have been given in table 2. One notices
from table 2 and figure 3 immediately that behind the ionization front the temperature
is large while at the centre the temperature goes to zero! This is the outcome of neglecting
recombination and any subsequent re-ionization of the recombined atoms by absorption of
radiation from the star. The combined effect of these two processes would be to maintain
the temperature at a finite value.

Thus to obtain a better picture of the flow we need to consider the effect of the recombina-
tion of ions with electrons.

7. CYLINDRICAL IONIZATION FRONTS (INCLUDING THE EFFECT OF RECOMBINATION, ETC.)

Formathematical reasonsa complete solution of equations (1) to (6) can best be obtained
for a problem in which cylindrical symmetry exists. Though such a solution obviously is
restricted in its physical application, it will, however, serve as an indication to what happens
in the real case. We consider a ‘cylindrical’ star model, which is made up of a group of
stars of the same type uniformly distributed along a line at a distance 4 apart, with a total
photon output equal to the sum of the outputs of the individual stars. The photon output

352
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per unit length of cylinder can then be approximately related to the output from each indivi-
dual spherical star by the equation,
(S Bo) ey, = (2/d) (S RE) spn, (34)
For the cylindrical case n = 1, so that for a similarity solution, the initial distribution of
density must be given by p, = w,r~!. This variation is compatible with equation (8) if the
neutral gasis at a uniform temperature 7 and GA#M[kT; = 1. When numerical values are
inserted, #, which is twice the mass of the ‘cylindrical’ star per unit length, is found to be
12 x 107} g/cm. Since this is a rather special value it is better to neglect gravitation as was
done in the spherical case. We will, however, use it to estimate particular values of d, which
up to now has been completely arbitrary. In a similar way to that used in relating photon
outputs, we relate the mass per unit length of cylinder to the mass of each individual star.
Substituting 7j = 100 °K, we find the values of dshown in table 3. This enables a comparison
to be made between cylindrical and spherical models.

TABLE 3
type of star Os5 07 Ogqg Bo B2
10~164 (cm) 48 32 16 8 4

By substituting the appropriate similarity expressions (14) and (15) in equations (1)
to (6), five ordinary differential equations are obtained. These can be rearranged to give
the following set of equations,

du

Dy = ¥ =2+ — 22 +31}2, (35)
Dy det
Fn dy 3(11—%) [(3—a%) (1 —2)*=3(3—2)/* +{(1—-%)* 3%} F],  (36)
Dpdo 22
o =T B, | (37)
d M 10 .2
1= g =2z [ 202" ) (38)
d
”d{ Mfw(l x), (39)
where = (1—-%)2—s?, (40)
d2=%(1+x) n*(T/T), (41)
5/ M\t p3 3% 10~
F=3(57) Slara—na-p-ur-nrm]| )

and 7 is a temperature to be defined later.
Equations (35) to (39) should now be solved starting with an asymptotic series for the
dependent variables as 7 — co. The series can be shown to be of the form

ﬁzz~—§—+’%+..., (Q) gl .), W~ ;(QO+Q+ )
x~1—Z~1—|—..., j~j*+%(3o+%+...), ' (43)
F~ 1+ L, T~¢9O+%1-+...,
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where #;, Co, &1y Qs €45 745 805 15 V1, b, 0, €tc., are constants related to each other. Sub-
stituting the series (43) in equations (38), (41) and (42) and equating terms of largest order,

we obtain
3x10710Q,
Ik =" ar % (44)
_ 56,
fo=13 T (45)
X 10710 Q) Q,
- () FlErna-25a A L0 | (46)
Eliminating #, 7, from equations (44) and (46) and putting Q2 = 2kT, /M, we obtain
— 0 14 2 250~%
1=09x10 (%T) @ ﬁ 2 2-4 % 102507 Lm(ﬁ)] (47)
TABLE 4
type of star Os5 07y Og Bo B2
T« (°K) 80000 50000 32000 25000 20000
T.(°K) 9420 8290 7960 6880 6470

which is an equation determining, in terms of £, and 7, the temperature of the ionized gas
near the radiating star. Assuming 6, to be of the order of 10000 °K and (M/2kT.)}Q), < 101,
then 0, is approximately given by

%—%—2 4x1020;1 L,,(0,) = 0. (48)
We will denote this value of §; by 7, and it is shown tabulated in table 4 for differing values
of Ty. Other equations may be obtained which connect the various constants in the series
expansions. However, if one pursues this method further there does arise the difficulty of
matching conditions at the centre to conditions in the undisturbed H1 region, i.e. relating
the values of the parameters w, and 7}, to the constants in the series expansions. It turns
out that a series of test runs must be made on a computing machine before the required
information is obtained.

One can, however, derive an extremely accurate result without much labour. The basic
approximation involved does not require the introduction of similarity into the problem
at all, and the approximation holds also in the spherical and plane cases. Eliminate J
between equations (2) and (6) and use the continuity equation (5) to obtain
3p) p]—%(l) Q3 Dx  Ppx? (Q2 3 kT) 'szLei(T)-

Dt(2p 2Dt M\2 2M) M

By using equation (3) and substituting for f, this can be rewritten
3 DT 1Dp (MQ%_g) 1 D«
2T Dt pDt \2kT 2/1+xD¢

_ 18 x10Mpx® T MQF 3

o (1+x) T %T 2

If we take a time-scale of a million years, so that ¢ is expressed in terms of this quantity as
unit, the right-hand sides must be multiplied by 3 x 10'® and the numerical coefficient

(49)

24X 10BT-1L, (T)]. (50)
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becomes 1 x 10?7. Hence, even with densities of a few hydrogen atoms per cubic centimetre
the quantity inside the square brackets on the right-hand side of equation (50) is multiplied
by a very large factor. Thus, unless 7" is near the value 7, for which the quantity in the
square brackets is zero, at least one term on the left-hand side of equation (50) must be large.
We rule out a large rate of change of x and p, and consider the rate of change of the tempera-
ture. Approximately, we can write

3 DT 1-8x10Mpa®TMQ5 3 iy
ST DI (Lin 71 Lokl s 24X 18T Lel.(T):l. (51)

Thus, if 7's T, then DT/Dt¢ = 0, i.e. if at any point of the ionized region the temperature is
different from 7, then it will increase or decrease to it in a short interval of time. To see this
more clearly put 7= 7,+ 7" and assume 7" to be a small perturbation, equation (51)
approximates to

1 D7’ 218x 1014px2[MQ_9
2kT,

T Dt 3 (14277
For T, = 10000 °K the time interval would be of the order of p=110712s. If p = 10~ g/cm?,
the time interval is about 6000 years, which is small compared to the time scale involved in
the problem. The cooling and the subsequent re-ionization of recombined atoms therefore
maintain the ionized gas at a constant temperature 7, so that we can with confidence
replace the energy equation (6) by 7" = T7,. The analysis can be simplified further, for in
the H 11 region the gas will be nearly fully ionized, so that x can be assumed approximately
equal to 1 and Dx/D? can be neglected in equation (2), i.e. a balance is assumed to take
place between ionization and recombination. Using the equation of continuity (5), equa-

tion (2) then becomes aJ(1—x) = fo| M. (53)

The reader should note that it is necessary to retain the variation of (1 —x) in the absorption
term since J is large.

When the above approximations are made the equations of energy across the ionization
front must also be modified. We must now allow for the rapid cooling of the gas by
recombination and the excitation of O* ions in the region of the ionization front, so that a
particle of fluid having passed through the front is almost at once at a temperature 7.
This means that only the equations of continuity (10) and momentum (11) of the ionization
front relations are valid. These turn out to be sufficient to solve the problem.

We will now use the foregoing approximations to determine the flow when the initial
distribution is given by p, = w,r~. Substituting 7" = 7, ¥ = 1 and the similarity forms (14)
and (15) into equations (3), (4) (with gravity neglected) and (5) we obtain

du

—0:6x 10874 ,(T,) +2 4><1025T%(d1‘) ] (52)
dT T=T,

Dy'qy = 21—+ (1-22) 7, (54)
D do
w d77 (55)

where D, = (1—%)%—p?2. These equations could have been obtained from equations (35)
to (87) by substituting in equation (36)

o = \/3 7 (56)
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.. *%(lm%)z—ﬁﬂ
thus obtaining F= aoa)g (57)

Also by putting x = 1 in equation (38) and (39) we obtain
af(l—x)="~-" O, (58)

ds_3x100

and n 'd; e sz“;_%” w*,

(59)
so that once w has been determined x and _# can be calculated from equations (58) and (59).

If the neutral gas is disturbed before it is ionized then we must also solve the equations
obtained by substituting the similarity expressions (14) and (15) in the equations appro-
priate to the non-ionized gas; this yields the following set of equations.

du

Dyy = V(- ) (3 —2), (60)
%‘3’ _ \(11_%) [(3—4%) (1 — )2 +a22(3—2%)], (61)
Dypdo  (3—%)s?

Dy = (62)

where D = (1 —-%)?2—/2.

Since equations (60) and (61) are best solved by working in the (#,%/)-plane, we also
solve equation (54) in that plane using equation (56). In a similar manner to that described
in § 6 we can discuss the integral curves in the (%, )-plane. The significant curves are shown
in figure 4. The curve BCM is an integral curve representing a solution in (%,/)-plane
of equations (60) and (61) with 7 eliminated, the other curves represent solutions of the
differential equation (54).

The curve marked Ri.f. represents possible states behind a R-type ionization front
(there is no restriction on % since equation (26) is now no longer applicable).

We first consider the case when an ionization front travels by itself. The ionization front
in this case is strong R-type and corresponds in figure 4 to the point 4. The solution in the
H 11 region is represented by the integral curve ADE through A followed in the direction 7
increasing; it has the property that as # — 00, % — %. The speed of the ionization front is
calculated from the computed value of (= ,/%7,) and is found to be given by

U, = J(2kT/0-23M). (63)

It is interesting to note that for this value of U, the absolute velocity of the gas behind the
front is approximately sonic. By integrating equation (55) along the integral curve ADE
continued to infinity, we can obtain w/w,. Similarly we can determine from equations (58)
and (59) the values of #(1—x)/w, and (# — £ 4)/w at the front. In order to find # and
(1—x) explicitly we need to know the value of w,. This can be found by investigating the
internal structure of an ionization front, but since this is rather complicated it is better to
approximate as follows. To find the order of magnitude of 7, let us assume that it is of the
same order as the number of photons which would have been required to propagate an
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ionization front with speed U in an undisturbed gas of density variation py(r) = wy/r
assuming that no recombination takes place at the front. From equation (23) we see that

Ji=0 (yﬁ) (64)

Thus if 0y, < (M #,)/U, then % < #,. Assuming this to be true, the value of v, can be
determined since — f,/w? and 7, are known. Axford’s results which deal with the
structure of an ionization front bear out the validity of these approximations. Physically
they amount to saying that, in order that the temperature may be maintained at a value

“ E[

I
|
|

S~
e
f—

L
~-05

Ficure 4. The (%,o/)-plane representing the solutions of the differential equations (54),
and (60) and (61) combined. .

T., an appreciable part of the star’s radiation must be absorbed within the ionized region.
From equations (1) and (2), and assuming % < £, an approximate relationship between
S« and o, is obtained, namely

B A—ﬂ“fRi o 1. 3X lO“IOw%f’?i (w]wy)?
Fx *J*R*~M2 . prdr = TIAE Ju 7 dp. (65)
Substituting the numerical value of the integral in equation (65) one finds that
wy = 0-68x 10719 /(TH 7). (66)

Thus if the initial density distribution of the neutral gas is of the form p, = /7, and v, and
the photon output of the star arc related by equation (66) then an ionization front (strong
R-type) will travel into the neutral gas with a speed given by expression (63).

One notices that the speed at which the front propagates is proportional to 7% rather
than T3} as was previously found in §6. Table 5 gives the values of w, and U, for each type
of star for which the above description of the flow pattern would be applicable. The values
of the photon output per unit length of cylinder (2Jy Ry = 27 7,), which have been used,
are those calculated from equation (34) and tables 1 and 3.
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The density ratio p/p,, the gas velocity ratio u/u; and the ratio Jr/Jy R, are plotted in
figure 5. It will be noticed that the density ratio levels out towards the centre to a value a
little greater than 3.

We next calculate the values of w, for which a shock wave will propagate ahead of the
ionization front. Asin §6 we will assume that the shock wave is strong. In figure 4 a strong
shock is represented by the point B. We follow in the direction of increasing 7 the integral
curve (representing a solution of the differential equations (60) and (61)) through B to
some point C, say, which gives the values of %, and «Z,. These values are now substituted in
equation (25), which determines the conditions behind a D-type ionization front: the D1i.f.
curve as shown in figure 4. It cuts the integral curve AE at D, from this point we follow the

TABLE 5
type of star O5 07 Og Bo B2
102w, 472 1-09 037 011 0-05
U, (km/s) 258 24-2 22-8 22°1 214

integral curve in the direction 5 increasing to infinity. The speed of the ionization front is
calculated immediately from a knowledge of point D, and the speed of the shock can be
calculated by substituting the (%,.) relationship represented by the curve BC'in either of
the equations (60) and (61) and then integrating. w/w, is calculated by integrating the
differential equations (62) and (55) along the twosections BC and DE (continued to infinity),

I= Jr|Jy Ry

PIPi

ufuy

|
0 05 7R 10

Ficure 5. Density ratio p/p;, velocity ratio u/u;, and Jr/J R, for the case when an ionization
front travels by itself.

respectively. By substituting the variation of w/w, in equation (65), we can determine the
approximate value of w, for which this particular model is appropriate. In figure 6 the
values of U,/U, (corresponding to the selection of the point C) and w,10'//(T# 7,) are
plotted for various values of U,/(M/(2kT})). In figure 6 one notices that the minimum
value of U/U, is 0-81, so that the disturbed neutral gas surrounding the ionized region
propagates as a thin shell of material headed by the shock. The gas velocity, pressure and
density distributions are shown plotted in figure 7. In table 6 the values of the ionization
front velocity, shock velocity and temperature 7 of the gas behind the shock are given
for various values of the parameter v, relevant to the particular distributions given in figure 7.
Several features of these results are worth noting and can be seen in figure 7. First, the density
distribution shows that most of the gas is concentrated in a narrow region just outside the
ionization front, whilst the gas in the ionized region is approximately uniform and small.

36 VoL. 253. A.
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Secondly, the pressure in the ionized region is approximately equal to the pressure behind
the shock; this is consistent with the idea that the thin shell of material surrounding the
ionized gas is expanding at a constant rate. Another feature about the solution can be seen
from table 6. The temperature behind the shock for case (a) is of the order of 5000 to 8000 °K,
so that it may be necessary to take into account cooling mechanisms such as dissociation of
the neutral gas. For more extreme cases than case (), where the temperature behind the
shock varies from 800 to 1100 °K, the shock can no longer be assumed to be a strong shock;
the analysis could be modified to include this effect.

0 1 2
UilJ{(2kT)/ M}

FIGURE 6. 1090,//(F4T%) and U,/U, plotted against U,/ V{(2kT,)/ M} (cylindrical case).

Our next task is to find out what happens when ,/,/(_ 7, T) < 0-68 x 10-19. It is clear
that for this case we must suppose the existence of some discontinuity within the Hm
region. However, we have already shown that in the ionized gas the temperature is always
equal to 7,; there must therefore be a narrow region behind such a discontinuity if it exists
in which the temperature is adjusted to 7;. If we include this narrow region, where adjust-
ment takes place, in with the discontinuity then the resulting discontinuity could be
termed an ‘isothermal’ shock where the temperature on both sides is equal to T,. Using
suffixes ¢, 7, to label quantities on the star side and ionization front side of the ‘isothermal’
shock, respectively, then the data are related by the equations

wi[(lw%l) = wi2(1~02/i2)9 (67)
3} 3%
(1—a) ~ T ) e (%)

AP = s, (69)
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where w, % and s are the similarity forms in expressions (14) and (15). For the gas to come
to rest at the star the point (%, ) must be on the integral curve marked 4E in figure 4.

11’

Thus, given such a point we can calculate %, from equation (68). The locus of the points
(#,,, +4,,) is referred to as the ‘isothermal’ shock curve and in figure 4 it is represented by the

curve FGH and is marked ‘i.s.” We now follow the integral curves through points of this i.s.

g
2 2F
I\PIPs
T/
= ! plps IC P/Ps — %
P/ps i L
: :
1 1
] 1
! 1
”/"S/——-—" :
plps :
| , | :ﬂ/ps 1 |
0 05 10 0 05 10
Ficure 7(a) Ficure 7 (b)
Ficure 7. Gas velocity, pressure and density distribution (————- denotes the position of the
ionization front).
TABLE 6
type O5 07y O9g Bo B2
of star A N - A \ p A L, A L, A ,
(@ (&) (a) (6) (a) (6) (a) (b) (a) ()
102w, 9:03 5105 2-09 11-79 071 4°00 021 1-19 010 054
Uj(kmfs) 162 58 152 55 144 5'1 13°9 50 13'5 48
U, I'14 1-23 1°14 1-23 I'14 1-23 I'14 1-23 I'14 1-23

SU,
T,(°K) 7730 1150 6810 1010 6040 910 5650 850 5320 790

curve in the direction 7-decreasing. It will be seen from figure 4 that the integrals curves
starting at points within the small section FG meet the ‘R.i.f.” curve. Thus a flow pattern,
which seems to be a possibility in this case, could be described by an ionization front (weak
R-type corresponding to a weak detonation) propagating into the neutral gas with an iso-
thermal shock following it in the ionized gas. The values of »,, shock and ionization front
velocities can be calculated in the way already described. In figure 8 the gas velocity,
pressure and density distributions are shown plotted for the particular case when
wy = 0-61 x 10719, /(#, T}). The speed of the ionization front U, is 4-7./(2kT,/M) cm/s,
36-2
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while that of the ‘isothermal’ shock is 2./(2k7,/M) cm/s. By substituting this speed in the
normal Rankine-Hugoniot shock relations we can calculate the strength of the shock
which would propagate at the given speed and with conditions ahead represented in figure 4
by the point (%, «7,). We find that p,/p, = 1-1, where p, is the pressure immediately behind

6r—

[N S Y IO N NONN NN N B
0 05 R 1

Ficure 8. Gas velocity ratio, density and pressure ratio plotted as a function of 7/R;.
~~~~~~~~ denotes the position of the isothermal shock.

the shock (not ‘isothermal’). The ‘isothermal’ shock could therefore be regarded as a
weak shock followed by a region in which the temperature is adjusted to 7,. A glance at
figure 4 will reveal that the speed of such a discontinuity is always about the same as that
calculated for the case when an ionization front travels by itself. Thus the speed will be in
the region of 20 to 30 km/s, depending upon the type of radiating star. The rate of expansion
of the whole ionized region is not limited and varies from that given by expression (63) to
infinity. The values of w, vary according to the flow pattern which is assumed.

Asin §6 there are other flow patterns which could be considered, such as those in which
a shock leads the ionization front which is followed by an isothermal shock. Referring to
figure 4, we see that for a fixed relative velocity between the shock and the ionization front
(i.e. corresponding to fixing the point C) we could follow the integral curve from D in the
direction 7 increasing or we could follow any one of the integral curves (say OIJ) which
intersect the Di.f. curve in the region bounded by HGF, FO and the negative U-axis. In the
latter case the flow pattern would include an ‘isothermal’ shock in the ionized gas. Thus
the question of uniqueness shows itself again and this can only be settled by considering the
structure of ionization fronts in great detail. This is discussed by Axford in the next paper
where it is shown how one can obtain the unique solution in any given case.
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Finally, it is worth noticing that the temperature variation in the ionized gas could be
determined, since knowing % and 7 we can find F (see expression (57)). Equations (38)
(neglecting the dx/dy term) and (42) then determine the temperature distribution. It is
found that the variation in the ionized region is about 5 °K and is therefore negligible.
The degree of ionization can also be found and here again the error in assuming that x is
approximately equal to 1 is small.

8. SPHERICAL IONIZATION FRONTS (II)

Finally, we consider the expansion of a spherical ionized region using as a working basis
the approximate ideas developed in § 7. The results of §§ 6 and 7 have shown that recombina-
tion and cooling cannot be neglected even at the ionization front. The analysis of § 6 must
therefore be re-examined and an effort made to include these effects. We note first that
restriction (ii) is no longer applicable since it followed from equation (9) which assumed
that no recombination or cooling at the front took place. This means that the similarity
form for the density could be other than that given by expression (14). In fact, in order
to take into account recombination, the similarity form is determined by the approximate
equation LB (R,
J*R*:mfop r2dr, (70)

which like equation (65) assumes that much of the radiation has been absorbed in the ionized
gas before it reaches the ionization front. Since J, R} is a constant, equation (70) implies
that, for a similarity solution to be applicable, pr* must be a function of the similarity vari-
able ¢/r, namely w(7). Thus we now solve the spherical problem, taking into account cooling
and the re-ionization of recombined atoms in the Hi region, for the case when the initial
density distribution varies according to the law p, = w,/r}. The analysis is similar to that
described in §7 so that only brief details will be given. The differential equatlons describing
the motion in the ionized gas for this case are

Dy — 21— 1) —j(2r 1)1, ()
Dipd
g = tra-a), (72)

where D, = (1—%)?—n?. & is given by expression (56), and equation (71) is solved in the
(%,s7)-plane. The differential equations applicable in the H1 region are

Dy =%(1— ) +33—U), ‘ (73)
Dy é‘f ﬁ_g@(l —U)—[1 —35(1—u)~1] 2, (74)

Dpdo  3(3—2)/*—u(1—%)
w dp 201 —%) ’

(75)

where D = (1—%)%?—s/2% Figure 9 shows some of the integral curves which represent
solutions of equation (71) in the (%,.)-plane (note that o/ =,/(5/3) 7). The integral curve
labelled BCM is a solution of equations (73) and (74) with 7 eliminated and the curve goes
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through the strong shock point B. By varying the point C on the curve BM, one can obtain
solutions corresponding to different positions of the ionization front relative to the shock
wave.

When the Hi region is headed by a strong R-type ionization front with no shock in
front, the solution is given by the integral curve ADE in figure 9. From a knowledge of the
point 4 and by integration of equation (70), the speed of the ionization front and the appro-
priate value of w, are found to be

2kT,

= Joaasy o= 084410710 /(T RY). 9)

Comparing the first of these expressions with equation (63) one notices that the speed of

the ionization front is almost the same as for the cylindrical case. Again we find that the

2 El
1

oA

Se——.
-~ .
-
-~
~—

| I
-0-5 0 05 U 1
Ficure 9. The (%,.s/)-plane representing the solution of differential equations (71), (73)
and (74) (spherical motion).

strong R-typeionization front propagates with a speed such that the gas velocity immediately
behind it is approximately equal to the local speed of sound, i.e. u, = /(10k7,/3M). One
must not, however, interpret this as meaning that all strong R-type ionization fronts
will propagate at such a speed that the above result is true, as it depends on the choice of
£ for y; the approximate equations of motion are independent of this choice. A comparison
between the densities is difficult because of the different assumptions made regarding the
density of the neutral gas initially, namely like 1/r in the cylindrical case and like 1/## in the
spherical case. A plot of the density and fluid velocity distributions in the Hir region yields
results similar to those shown in figure 5.

Calculations could now be made which would determine the values of the parameter o,
for which a shock wave will propagate ahead of the ionization front. Such calculations

would yield substantially the same results as for the cylindrical case. Figure 10 shows the
values of 10%,/./(Jy R% T}) and U/U, plotted against U,/ J{(2KT,) | M.
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For a given value of w, and given type of star, the shock and ionization front velocity can
be read off. The ionization fronts in all these cases are D-type if we regard the strong R-type
ionization front as being a D-type initiated by a shock wave. Again there is a value of
wo// (Jx R: T1) below which the above description of the flow is no longer applicable. For
these cases the presence of ‘isothermal’ shocks within the Hur regions must be assumed.
The general observations made regarding these in §7 still apply in the spherical case. The
question of uniqueness and the possibility of the existence of weak R-type ionization fronts

6 ——

1019,//( S« T)
(%)

Ui/ Us

| | |
0 1 2 0
U,/ J{(2kT,)[ M}
Ficure 10.

are raised again. One slight difference will be observed when figure 9 is compared with
figure 4. The integral curves, starting at points on the section OF of the Ri.f. curve and for
which U < 0-25, lie to the right of the Ri.f. curve. This means that lower speeds of the ‘iso-
thermal’ shock may be possible in spherical geometry than were possible in cylindrical
geometry (transitions across an ‘isothermal shock’ from points on FX to points on 4K have
to be considered in the spherical case).

CoONCLUSIONS

It is true that the solution which has been described in this paper is an idealization of the
problem of determining the effect of a star’s radiation on the surrounding interstellar gas.
A particular initial density distribution has been assumed in order that similarity of the flow
pattern at differing times may be used to put the differential equations in a form which
allows fairly easy integration. However, several conclusions can be drawn from the analysis
and an overall picture of the flow in a real problem can be obtained. The analysis has
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revealed what type of discontinuities may be expected to occur; for instance, it has told us
that at speeds less than about ./(2k7;/0-23 M), a shock may be expected to move ahead of the
ionization front, while for speeds greater than this an ‘isothermal’ shock may occur within
the H 11 region. Though the value quoted here is strictly true for the case of similarity only,
the order of magnitude of the velocity, at which the character of the flow is changed, is
probably correct, since ,/(2k7,/M) is the fundamental speed involved in the problem.
Thus, for any initial density distribution of the neutral gas and when the similarity hypo-
thesis is no longer true, the following description of the flow from the time the star begins
to emit ionizing radiation is suggested. Initially a weak R-type ionization front moves out
with a fast speed, followed by an ‘isothermal’ shock which moves with a speed of about
J(2kT,/M). The ionization front slows down. Two possible flow patterns become possible.
Either a shock wave moves away from the ionization front leaving a strong D-type
ionization front behind or the isothermal shock catches up the ionization front and the
interaction leads to a strong R-type lonization front moving with a speed of order
J 2T, M). If the former is the case then at a later stage the isothermal shock will catch
up with the strong D-type ionization front and a weak D-type ionization front is formed.
If the latter is the case then a shock wave emerges from the strong R-type ionization
front leaving a weak D-type ionization front behind. Both yield the same final flow
pattern, which ultimately becomes that studied by Strémgren (1939) and the Hu region
has dimensions of the Stromgren sphere.

The author wishes to thank Dr I. D. Kahn for the many valuable discussions on the sub-
ject he has had with him and at whose suggestion this work was undertaken. He is also
indebted to his co-worker I. Axford for his development of the subject.
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